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Abstract 27 
Background: While evidence suggests that long-term air pollution (AP) and noise may adversely 28 

affect cognitive function, little is known about whether environmental exposures also promote 29 

structural changes in underlying brain networks. We therefore investigated the associations 30 

between AP, traffic noise, and structural measures of the Default Mode Network (DMN), a 31 

functional brain network known to undergo specific changes with age. 32 

Methods: We analyzed data from 579 participants (mean age at imaging: 66.5 years) of the 33 

German 1000BRAINS study. Long-term residential exposure to particulate matter (diameter ≤10 34 

µm [PM10]; diameter ≤2.5 µm [PM2.5]), PM2.5 absorbance (PM2.5abs), nitrogen dioxide (NO2), 35 

and accumulation mode particulate number concentration (PNAM) was estimated using validated 36 

land use regression and chemistry transport models. Long-term outdoor traffic noise was modeled 37 

at participants’ homes based on a European Union’s Environmental Noise Directive. As measures 38 

of brain structure, cortical thickness and local gyrification index (lGI) values were calculated for 39 

DMN regions from T1-weighted structural brain images collected between 2011 and 2015. 40 

Associations between environmental exposures and brain structure measures were estimated 41 

using linear regression models, adjusting for demographic and lifestyle characteristics.  42 

Results: AP exposures were below European Union standards but above World Health 43 

Organization guidelines (e.g., PM10 mean: 27.5 µg/m3). A third of participants experienced 44 

outdoor 24-hour noise above European recommendations. Exposures were not consistently 45 

associated with lGI values in the DMN. We observed weak inverse associations between AP and 46 

cortical thickness in the right anterior DMN (e.g., -0.010 mm [-0.022, 0.002] per 0.3 unit increase 47 

in PM2.5abs) and lateral part of the posterior DMN. 48 

Conclusion: Long-term AP and noise were not consistently associated with structural parameters 49 

of the DMN in the brain. While weak associations were present between AP exposure and 50 

cortical thinning of right hemispheric DMN regions, it remains unclear whether AP might 51 

influence DMN brain structure in a similar way as aging. 52 

 53 

Keywords: Air pollution, particulate matter, brain imaging, brain structure, cognitive function 54 
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Abbreviations: AD, Alzheimer’s Disease; aDMN, anterior Default Mode Network; AP, air 56 

pollution; BMI, body mass index; DAG, directed acyclic graph; dB(A), A-weighted decibels; 57 

DMN, Default Mode Network; ESCAPE, European Study of Cohorts for Air Pollution Effects; 58 

EURAD, European Air Pollution Dispersion; ETS, environmental tobacco smoke; GMV, gray 59 

matter volume; HNR, Heinz Nixdorf Recall; I-Lden, indoor 24-hour weighted traffic noise; I-60 

Lnight, indoor nighttime traffic noise; IQR, interquartile range; iSES, individual socioeconomic 61 

status; Lden, outdoor 24-hour weighted traffic noise; lGI, local gyrification index; Lnight, outdoor 62 

nighttime traffic noise; LUR, land use regression; MP-RAGE, magnetization-prepared rapid 63 

acquisition gradient-echo; MRI, magnetic resonance imaging; NO2, nitrogen dioxide; nSES, 64 

neighborhood socioeconomic status; PASA, posterior-anterior shift in aging; pDMN, posterior 65 

Default Mode Network; M2.5, particulate matter with aerodynamic diameter ≤ 2.5 µm; PM2.5abs, 66 

absorbance of particulate matter with aerodynamic diameter ≤ 2.5 µm; PM10, particulate matter 67 

with aerodynamic diameter ≤ 10 µm; PNAM, accumulation mode particle number concentration; 68 

ρ, Spearman correlation coefficient; SD, standard deviation; WMV, white matter volume 69 

  70 
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1. Introduction 71 

 Air pollution (AP), defined as a harmful mixture of gases and particles in the air, is a 72 

known risk factor for cardiovascular and respiratory diseases as well as mortality across the 73 

world (Schraufnagel et al., 2019; Thurston et al., 2017). Recent experimental and epidemiologic 74 

evidence suggests that AP exposure may also adversely affect the brain via systemic 75 

inflammation and direct translocation of small particles into the brain (Genc et al., 2012). 76 

Epidemiologic studies support that higher AP exposure is linked to decreases in cognitive 77 

function (Paul et al., 2019), including in memory function (e.g., Nußbaum et al., 2020; Tonne et 78 

al., 2014; Tzivian et al., 2016b).  79 

With growing evidence that AP exposure may accelerate cognitive decline, several 80 

observational studies have investigated whether AP exposure is also associated with adult brain 81 

structure. Associations between AP exposure and lower brain volume have been observed in 82 

multiple studies (e.g., Erickson et al., 2020; Gale et al., 2020), but results are difficult to compare 83 

across differing brain regions. In studies all conducted in the UK Biobank cohort utilizing the 84 

same AP exposures (PM2.5, PM10, NOx, NO2, and PMcoarse), they observed inverse associations 85 

between PM2.5, PM10, NOx and prefrontal volume (Gale et al., 2020), PMcoarse and volume in the 86 

left thalamus (Hedges et al., 2020), and PM2.5 and left hippocampal volume (Hedges et al., 2019). 87 

Non-volumetric measures of brain structure, such as region-specific cortical thickness, have been 88 

studied less frequently than volumetric measures. Results from two cortical thickness studies 89 

suggest that AP may be associated with reduced cortical thickness in some areas (e.g., frontal and 90 

temporal cortices [Cho et al., 2020]; Alzheimer’s associated areas [Crous-Bou et al., 2020]) but 91 

increased thickness in others (e.g., occipital and cingulate cortices [Cho et al., 2020]) 92 

 Alongside AP, chronic noise exposure has emerged as an important environmental factor 93 

and co-exposure (e.g., through traffic) that also exerts adverse effects on human health. Long-94 

term noise exposure has been linked to increased risk of non-auditory outcomes (e.g., 95 

cardiovascular disease, depression), with potential mechanisms including increased stress due to 96 

sleep disturbances and increased annoyance (Basner et al., 2014). Noise has also been linked to 97 

decreases in cognitive function, including poorer memory among children (Basner et al., 2014), 98 

increased risk of mild cognitive impairment (Tzivian et al., 2016b), and decreased memory 99 

function among adults (Tzivian et al., 2016a; Wright et al., 2014). At present, only three studies 100 

have examined how chronic noise exposure may influence adult brain structure with one showing 101 
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adverse effects on gray matter volume (Cheng et al., 2019), one showing no effect on cortical 102 

thickness and regional volumes (Crous-Bou et al., 2020), and one showing null and positive 103 

associations with gyrification, a measure of brain folding (Nußbaum et al., 2020).  104 

 While the study of long-term AP, noise, and brain health is relatively new, research 105 

supports that normal aging is consistently accompanied by global and region-specific changes in 106 

both brain function and structure. Structurally, old age is associated with decreased global 107 

cortical surface area as well as region-specific brain volume and cortical thickness, changes 108 

which have been linked to decreases in cognitive function (Gautam et al., 2015; Jockwitz et al., 109 

2019; Tsapanou et al., 2019). Local Gyrification Index (lGI), a measure of local surface structure 110 

that is thought to be rather sensitive, is also known to decrease with age (Hogstrom et al., 2013). 111 

Likewise, age-related changes in functional brain networks, which are regions that show highly 112 

correlated activity levels, have also been identified using imaging studies (e.g., Davis et al., 2008; 113 

Jockwitz et al., 2017). To date, Nußbaum et al. (2020)’s work in the fronto-parietal network is the 114 

only study to have looked at AP and brain structure in a functionally important brain network. 115 

They observed that AP exposures were inversely associated with lGI in the right hemisphere of 116 

the fronto-parietal network, results which are consistent with effects observed during aging. In 117 

conjunction with studies showing decreased cognitive function with higher AP exposure (Paul et 118 

al., 2019), this suggests that AP may accelerate or mimic the processes in the brain that occur 119 

with aging. Nevertheless, more work is needed before such conclusions can be made. 120 

 Composed of three bilateral regions in the brain, the Default Mode Network (DMN) is an 121 

important functional network that plays a large role in mental functions, such as self-referential 122 

thinking, and memory recall (Raichle, 2015). While the DMN is generally deactivated during 123 

externally-focused, attention-demanding activities, it is activated during the resting state (Raichle, 124 

2015). Aging of this network is associated with changes in functional connectivity, including a 125 

posterior to anterior shift (PASA) where frontal brain regions take over additional functions to 126 

compensate for decreased activity in posterior regions (Davis et al., 2008). These changes in 127 

functional connectivity are reflected in structural changes locally, with greater relative decreases 128 

in lGI observable in posterior brain regions of the DMN than in the anterior regions (Jockwitz et 129 

al., 2019; Jockwitz et al., 2017). Jockwitz et al. (2017) also observed larger age-associated 130 

structural differences in the right hemisphere of the DMN, consistent with the right hemi-aging 131 

theory that the right hemisphere is more susceptible to the effects of aging than the left (Brown 132 

and Jaffe, 1975; Dolcos et al., 2002). Nußbaum et al. (2020) also observed that AP was more 133 
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strongly associated with lower lGI in the right hemisphere of the fronto-parietal network 134 

compared to the left. 135 

Despite the DMN’s role in memory recall and previous studies linking AP and noise 136 

exposures to changes in memory-related brain functions, no studies have investigated how AP 137 

and noise exposures may influence brain structure in the DMN and whether these environmental 138 

exposures exert similar effects as observed with aging. We therefore investigated the associations 139 

between long-term ambient exposure to AP, road traffic noise, and structural measures of the 140 

DMN (cortical thickness, lGI) in the German 1000BRAINS study in order to evaluate the role 141 

these environmental exposures may have on brain structure. We hypothesized that higher 142 

exposure to AP and noise would be associated with decreased cortical thickness and lGI in the 143 

regions of the DMN, similar to what would be expected with aging. 144 

 145 

2. Methods 146 

2.1 Study population  147 

 This study was conducted using data from the 1000BRAINS Study, an epidemiologic 148 

population-based study designed to investigate the variability of brain structure, function, and 149 

connectivity during the normal aging process (Caspers et al., 2014). Participants of the 150 

1000BRAINS study were recruited from the prospective Heinz Nixdorf Recall (HNR) study and 151 

the HNR MultiGeneration Study in the highly urbanized German Ruhr area (Essen, Bochum, 152 

Mülheim), but the current study includes only HNR participants of the 1000BRAINS 153 

participants, as no environmental exposure data is currently available for the HNR 154 

MultiGeneration Study. The HNR study has been described in detail previously (Schmermund et 155 

al., 2002; Stang et al., 2005). Briefly, middle- to older-aged participants (45-74 years) were 156 

randomly selected from city residential registries and recruited via mail (recruitment efficiency 157 

proportion: 55.8%; Stang et al., 2005). Participants completed baseline (2000-2003; n=4,814), 5-158 

year follow-up (2006-2008; n=4,157), and 10-year follow-up (2011-2015; n=3,087) 159 

examinations. At each examination, extensive sociodemographic, lifestyle, morbidity, and 160 

laboratory information was collected. HNR participants were approached about 1000BRAINS 161 

participation at the 10-year follow-up examination, with the requirement that they were willing to 162 

travel the 100-120 km distance to the MRI study and did not have debilitating diseases (Caspers 163 

et al., 2014). Subjects were also excluded from participation in the 1000BRAINS study if they 164 
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were not eligible for having magnetic resonance imaging (MRI) measurements taken (i.e., 165 

claustrophobia, history of neurosurgery, presence of tattoos or permanent makeup on the head, 166 

cardiac pacemakers, surgical implants or prostheses in the trunk or head, coronary artery stents, 167 

and potentially dental implants and bridges producing artifacts in the images). Eligible and 168 

willing participants (n=688) underwent MRI scans as well as neuropsychological and motor 169 

assessments between 2011 and 2015 (Fig. 1; more details in Caspers et al., 2014 and section 2.4). 170 

Any participants whose MRI showed conditions requiring immediate medical protocol (e.g., 171 

acute stroke, aneurysm) or medical referral (e.g., post-stroke status) were excluded from the 172 

study, but normal aging-associated brain changes were not considered criteria for exclusion. 173 

Protocols for both the HNR and 1000BRAINS studies were approved by the local Ethics 174 

Committee of the University of Essen. All participants gave written informed consent.  175 

 176 

 177 
Fig. 1. Timeline showing when health examinations for the HNR as well as 1000BRAINS studies took place as well 178 
as when the air pollution and noise exposures were assessed. The ESCAPE and noise modeling estimates, while 179 
taking place later, were assigned to the residential addresses for HNR participants at baseline (2001-2003). 180 
Abbreviations: ESCAPE, European Study of Cohorts for Air Pollution Effects; EURAD, European Air Pollution 181 
Dispersion; HNR, Heinz Nixdorf Recall; MRI, magnetic resonance imaging 182 

 183 
2.2 Air Pollution Exposures 184 

 Two air quality models were utilized for estimating long-term exposures in this study. 185 

Long-term exposure to particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5; µg/m3), 186 

particulate matter with aerodynamic diameter ≤ 10 µm (PM10; µg/m3), PM2.5 absorbance 187 

(PM2.5abs; 0.0001/m), and nitrogen dioxide (NO2; µg/m3) was estimated using the European 188 

Study of Cohorts for Air Pollution Effects (ESCAPE) land use regression (LUR) model. This 189 

LUR model uses land use data to predict temporally-stable, point-specific AP exposures and was 190 
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built following the standards of the European-wide ESCAPE project (more details provided in 191 

Cyrys et al., 2012; Eeftens et al., 2012). Briefly, the ESCAPE project was designed to investigate 192 

the effect of long-term air pollution on health using prospective cohort studies in 15 countries 193 

across Europe. LUR prediction models were built within each study according to common 194 

guidelines (Eeftens et al., 2012) using data from individual measurement campaigns and local 195 

geographic data (e.g., traffic density, population density). For the Ruhr area, PM (20 sites) and 196 

NO2 (40 sites) data were collected between October 2008 and October 2009 (Hennig et al., 197 

2016). Detailed information on the geographic data included in the specific AP models can be 198 

found in Eeftens et al., (2012) and Beelen et al., (2013). The ESCAPE models explained a large 199 

proportion of the variance in annual AP concentrations in the Ruhr area (69% for PM10, 88% for 200 

PM2.5, 97% for PM2.5abs, and 89% for NO2; Eeftens et al., 2012). Each participant of the HNR 201 

was assigned point-specific exposure estimates for their residence at the baseline examination 202 

(2001-2003). Residence at baseline was chosen for exposure estimation (approximately 10 years 203 

prior to MRI), because mechanistic hypotheses suggest that environmental effects on the brain 204 

likely accumulate over an extended period of time (Block and Calderón-Garcidueñas, 2009). 205 

 Particle number concentrations (PNAM; n/mL) for the accumulation mode (mean diameter: 206 

0.07 µm; 67% of particles with aerodynamic diameters between 0.035 and 0.14 µm) were 207 

estimated for all participants using the validated, time-dependent, three-dimensional EURopean 208 

Air pollution Dispersion (EURAD) chemistry transport model (Memmesheimer et al., 2004; 209 

Nonnemacher et al., 2014). Using multiple layers and grids, the EURAD model simulates the 210 

chemical transformation, deposition, and transport of AP on both local and regional levels 211 

(Memmesheimer et al., 2004). It uses four sequential nesting grids (125 km, 25 km, 5 km, and 1 212 

km) to estimate hourly exposures for Europe, central Europe, the state of North Rhine-Westphalia 213 

in northwestern Germany, and the Ruhr Area, respectively. PNAM exposure estimates have been 214 

validated against measurements taken using a TSI 3926 scanning mobility particle size 215 

spectrometer (size range: 0.014-0.750 µm; TSI Inc., Shoreview, MN, USA) at the Mülheim-216 

Styrum monitoring station for the period 2011-2014 (Birmili et al., 2016). Pearson correlations 217 

were moderate (r=0.57) for daily measurements, with strongest seasonal correlations seen during 218 

winter and fall (r=0.61; Lucht et al., 2019). According to the 1 km2 grid in which their residence 219 

was located, HNR participants were assigned mean PNAM values for the baseline HNR period 220 

(2001-2003; ArcView, version 9.2, ESRI, Redlands, CA, USA).  221 

 222 
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2.3 Long-Term Traffic Noise Exposure 223 

 As required by the European Union Directive 2002/49/EC (European Environment Agency, 224 

2002), long-term road traffic noise was modeled for the year 2006 on behalf of local city 225 

administrations, who supplied source-specific noise values from the VBUS/RLS-90 method 226 

(Bundesministerium der Justiz, 2006) using CadnaA software (DataKustik GmbH.).  Outdoor 227 

weighted 24-hour noise (Lden; A-weighted decibels [dB(A)]) as well as outdoor nighttime noise 228 

(between 22:00 and 6:00; Lnight) were modeled at façade points (height of 4 m ± 0.2 m) using 229 

small-scale topography, building dimensions, speed limit, street axis, noise barriers, type-specific 230 

vehicle traffic density, and road surface (Bundesministerium der Justiz, 2006). For Lden, daytime 231 

noise (6:00-18:00), evening noise (18:00-22:00), and nighttime noise (22:00-6:00) were weighted 232 

differently, under the assumption that excess noise in the evening and at night is more disturbing 233 

than daytime noise (WHO Regional Office for Europe, 2009). As such, penalties of 5 dB(A) and 234 

10 dB(A) were added to evening and nighttime noise levels, respectively.  Outdoor exposures 235 

were assigned to participants using the maximum estimated noise value in a 10-m buffer around 236 

each participant’s address at baseline HNR examination. In analyses, outdoor Lden and Lnight were 237 

modeled as a truncated continuous variables with lower thresholds of 45 dB(A) and 35 dB(A), 238 

respectively (Ohlwein et al., 2019). Participants were assigned noise values according to their 239 

baseline addresses. 240 

 Along with outdoor façade noise, we estimated indoor 24-hour and nighttime noise levels 241 

using self-reported behavioral and apartment information based on a method by Foraster et al. 242 

(2014). It is described in detail for the HNR cohort in Ohlwein et al. (2019). Briefly, indoor Lden 243 

(I- Lden) was estimated in participants’ living rooms whereas indoor Lnight (I- Lnight) estimates 244 

reflect bedroom levels. These estimates were derived from outdoor estimates, with various 245 

factors resulting in reduction of noise. If the room was orientated towards a direction other than 246 

the postal address street, 20 dB(A) were deducted. When persons reported usually having their 247 

windows closed, we subtracted 30 dB(A) if they had single-glazed windows and 40 dB(A) if they 248 

had double-glazed windows. For persons who often, seldom, and never closed their windows, we 249 

deducted 21 dB(A), 16 dB(A), and 15 dB(A) from outdoor levels, respectively, as described in 250 

Ohlwein et al. (2019). I-Lden and I-Lnight were modeled with lower threshold values of 20 dB(A) 251 

and 10 dB(A), respectively, in the analyses.  252 

 253 

2.4  Brain Structure Measures in Regions of the DMN 254 
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 Brain images were acquired for all participants included in 1000BRAINS using Magnetic 255 

Resonance Imaging on a 3T Siemens Tim-TRIO MR scanner (Erlangen, Germany), using a 32-256 

channel head coil (Caspers et al. [2014]). In order to examine brain structure, i.e., cortical thickness 257 

and lGI, a 3D high-resolution T1-weighted magnetization-prepared rapid acquisition gradient-echo 258 

(MP-RAGE) anatomical scan was acquired and used for subsequent surface reconstruction (176 259 

slices, slice thickness: 1 mm, repetition time: 2250 ms, echo time: 3.03 ms, field of view: 256 x 260 

256 mm2, flip angle: 9°, voxel resolution: 1 mm3). 261 

 The identification of the DMN was part of a previous study and has been described 262 

elsewhere in detail (Jockwitz et al., 2017). Briefly, 691 resting-state scans were preprocessed 263 

using the FMRIB Software Library processing pipeline (http://www.fmrib.ox.ac.uk/fsl; Jenkinson 264 

et al., 2012). Afterwards, common spatial patterns across subjects within the resting state data 265 

were identified using MELODIC (Beckmann et al., 2005). For reliability purposes, this procedure 266 

was repeated 100 times, with each sample consisting of 200 randomly selected subjects. For each 267 

group, the DMN was selected and all DMNs were superimposed onto each other resulting in a 268 

probability map, which was thresholded at 95% (using fslmaths, FSL) and binarized. Finally, the 269 

DMN was composed of six clusters: two anterior (left and right prefrontal cortex) and four 270 

posterior (left and right posterior cingulate cortex/precuneus; left and right angular gyrus; 271 

Jockwitz et al., 2017). In analyses, the prefrontal cortex region was denoted as the anterior DMN 272 

(aDMN) while the posterior parts were denoted as the medial (cingulate cortex/precuneus) and 273 

lateral (angular gyrus) pDMN (Fig. 2).   274 

 275 
Fig. 2. The Default Mode Network (DMN) projected on the right and left hemispheres of a brain consisting of the 276 
lateral posterior DMN (pDMN), medial pDMN, and anterior DMN (aDMN).  277 

 278 

http://www.fmrib.ox.ac.uk/fsl
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 In order to calculate cortical thickness and local gyrification indices within all parts of the 279 

DMN (Jockwitz et al., 2019; Jockwitz et al., 2017), anatomical images were preprocessed using 280 

the automated surface-based processing stream implemented in FreeSurfer (version 6.0.0; for a 281 

detailed description of the surface reconstruction, see Dale et al., 1999; Fischl et al., 1999). Based 282 

on the reconstructed surfaces, LGI values were calculated according to Schaer et al. (2012) for each 283 

part of the DMN as the ratio between the total pial surface area (including sulci) to the outer hull 284 

surface area (excluding sulci). Mean cortical thickness (CT; for a detailed overview, see Fischl and 285 

Dale, (2000)) was calculated for each DMN region as the shortest distance (mm) between a vertex 286 

on the white matter surface and the corresponding vertex on the pial surface.  287 

 288 

2.5 Definition of Covariates 289 

 Variables from the baseline HNR examination were used in all analyses, with the exception 290 

of age (years), where age at time of 1000BRAINS examination was used. Smoking status was 291 

defined as current, former (>1 year since quitting), or never smoker. Cumulative smoking 292 

exposure (pack-years) was assessed for former and current smokers and accounted for periods of 293 

non-smoking. Exposure to environmental tobacco smoke (ETS; Yes/No) was defined as regular 294 

passive exposure to smoke at home, work, or other location. Physical activity (Yes/No) was 295 

assessed as regular sporting activities at least once a week for a minimum of 30 minutes. Alcohol 296 

consumption was obtained through dietary questionnaire and divided into five categories (0, 1-3, 297 

4-6, 6-14, and >14 drinks per week). Anthropometric measurements (height, weight) were 298 

measured at examinations according to standard protocols, and body mass index (BMI) was 299 

calculated as kilograms per meter squared. Quality of diet was assessed using a dietary pattern 300 

index, created by incorporating consumption frequency of 13 food items and diet quality 301 

classifications used in previous studies (Winkler and Döring, 1998, 1995). Possible scores ranged 302 

from 0-26 with 26 representing an ideal diet and were categorized into three categories 303 

(Unfavorable Diet, Normal Diet, Favorable Diet). Individual socioeconomic status (iSES) was 304 

defined as years of education, as classified by the International Standard Classification of 305 

Education (UNESCO, 1997), and divided into four categories (≤10, 11-13, 14-17, ≥18 years). For 306 

neighborhood SES (nSES), unemployment rates (units of percent) between 2001-2003 were 307 

obtained from local census authorities for each residential neighborhood according to 308 

administrative boundaries (median size: 11,263 inhabitants; Dragano et al., 2009). Nearness of a 309 
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participant’s residence to a major road (Yes/No), defined as ≤50 m from a main road or ≤100 m 310 

from a motorway, was calculated using official digitized maps with a precision of at least 0.5 m.  311 

 312 

2.6 Statistical Analysis 313 

 We investigated the association between long-term ambient AP and road traffic noise 314 

exposures and structural brain parameters (lGI; cortical thickness) in the DMN using linear 315 

regression models. Individual models were conducted for the aDMN, medial pDMN, lateral 316 

pDMN on both the right and left hemispheres. The normality of residuals was confirmed for the 317 

models using Q-Q plots, and the appropriateness of restricted cubic spline terms (knots=4) for 318 

continuous variables was assessed in exposure-free models. Associations were estimated as the 319 

absolute difference in the outcome per interquartile (IQR) increase for air pollutants or per 10 320 

dB(A) increase for noise exposures and presented alongside 95% confidence intervals. 321 

 Three models of increasing covariate adjustment were conducted. Model 1 included the AP 322 

or noise exposure, age at MRI and sex. In addition to age and sex, variables in Model 2 were 323 

identified using a directed acyclic graph (DAG; Fig. S1) and included alcohol consumption, BMI, 324 

diet, physical activity, and smoking (status; cumulative; ETS). The DAG was built using 325 

DAGitty software, which outputs minimal sufficient adjustment sets, (Textor et al., 2011) and 326 

included variables selected based on prior literature. For the Main Model (Model 3), all AP 327 

models were additionally adjusted for outdoor Lden whereas noise models were additionally 328 

adjusted for PM2.5abs. Model 3 also included adjustment for all Model 2 variables. 329 

 Multipollutant models were conducted in order to investigate independence of effects by 330 

the various exposures. PM models were adjusted separately for NO2 and PNAM, NO2 models 331 

were adjusted separately for PM2.5 and PNAM, and PNAM models were adjusted separately for 332 

NO2 and PM2.5. In order to compare effect sizes between age and environmental exposures, we 333 

also conducted a secondary analysis examining the association between age and brain structure 334 

measures for DMN regions. Age models were adjusted for Main Model variables, with the 335 

addition of iSES and nSES, and associations were estimated per one-year increase in age at MRI. 336 

As indoor noise values were missing for approximately 10% of the analysis group (n=61), we 337 

also conducted a secondary analysis for outdoor and indoor noise within this smaller group 338 

(n=518) and using the Main Model adjustment set.  339 

 340 

2.7 Effect Modification & Sensitivity Analyses 341 
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 We evaluated potential effect modification by age at MRI using the addition of an 342 

interaction term between the AP exposure and a binary categorization of age (<65 years vs. 65+ 343 

years). Several sensitivity analyses were also conducted to assess the robustness of our results. To 344 

assess sensitivity to socioeconomic variables, we conducted models including all Main Model 345 

variables plus iSES and nSES. As updated information on several HNR baseline lifestyle factors 346 

was also collected at the 1000BRAINS recruitment, we also conducted a model utilizing the 347 

updated data from the later examination. We restricted our population to participants who 348 

reported working less than 15 hours per week, as we expected these participants to spend a 349 

greater proportion of their time at home and therefore errors in exposure estimates may be 350 

smaller. Additionally, we evaluated the associations using residential address at the 5-year 351 

follow-up HNR examination (2006-2008) and among participants who still resided at their 352 

baseline addresses at the 10-year follow-up examination (n=442). As several previous studies 353 

have looked at residential distance to major roads as a proxy for traffic exposure (Kulick et al., 354 

2017; Nußbaum et al., 2020; Wilker et al., 2016; Wilker et al., 2015), we also evaluated this 355 

exposure (residence ≤ 50 m from a federal or main road or ≤ 100 m from a motorway) in a 356 

sensitivity analysis. Because some participants were excluded due to missing information, we 357 

compared those excluded with the participants included in the analysis as well as with all 358 

participants who attended the 10-year follow-up HNR examination.  359 

 360 

3. Results 361 

3.1 Study Population 362 
 363 

 Overall, 688 participants of the 1000BRAINS study were recruited from the HNR study. Of 364 

these, participants were excluded from the analysis due to missing brain structure measures 365 

(n=85), AP exposures (n=5), outdoor noise levels (n=2), or adjustment variables (n=17; Fig. S2). 366 

The final study population therefore included 579 participants. In general, the study population 367 

was in late middle age at HNR baseline (mean age: 56.2 years [SD: 6.7], range: 45-74 years), 368 

approximately 10 years older at time of MRI (mean age: 66.5 years [SD 6.7], range: 56-85 years), 369 

slightly overweight (mean BMI: 27.3 kg/m2 [SD: 4.1]), and had slightly more men than women 370 

(54.2% Male; Table 1). Most participants had at least 11 years of education and did not currently 371 

smoke. For observed time-varying lifestyle factors, participants had similar values at baseline and 372 

1000BRAINS recruitment, with the exception of a shift from current smoking to former smoking 373 
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and greater exposure to environmental tobacco smoke at the later time point (Table 1). 374 

Participants excluded from the analysis were very similar to those included (Table S1), with 375 

excluded participants slightly more likely to be male. On average, HNR participants who also 376 

took part in the 1000BRAINS study were slightly younger, more male, more likely to eat an 377 

unhealthy diet and drink more, and more highly educated than the average participant at the 10-378 

year follow-up HNR examination (Table S1). 379 

Table 1. Demographic and lifestyle characteristics of the 1000BRAINS study participants (n=579) at 
HNR baseline (2000-2003) and, when updated information was collecteda, at recruitment for 
1000BRAINS (2011-2015). 
 HNR Baseline 1000BRAINS Recruitment 

Variable Mean ± SD or Median 
[IQR] or n (%) 

Mean ± SD or Median [IQR] 
or n (%) 

Age (years) 56.2 ± 6.7 66.5 ± 6.7 
BMI (kg/m2) 27.3 ± 4.1 28.3 ± 4.4 
Neighborhood Unemployment (%) 12.1 ± 3.3 - 
Female 265 (45.8) 265 (45.8) 
Formal Education   

≤10 years 32 (5.5) 32 (5.5) 
11-13 years 302 (52.2) 302 (52.2) 
14-17 years 143 (24.7) 143 (24.7) 
≥18 years 102 (17.6) 102 (17.6) 

Physical Activity, Yes 362 (62.5) 373 (64.5) 
Smoking Status   

Never Smoker 250 (43.2) 250 (43.3) 
Former Smoker 214 (37.0) 263 (45.5) 
Current Smoker 115 (19.9) 65 (11.2) 

Cumulative Smoking (pack-years) 18.8 [25.0] - 
Environmental Tobacco Smoke Exposure, 
Yes 225 (38.9) 380 (66.0) 

Alcohol Consumption (Drinks/Week)   
Never 226 (39.0) - 
1 to 3 96 (16.6) - 
>3 to 6  80 (13.8) - 
>6 to 14  87 (15.0) - 
>14 90 (15.5) - 

Diet   
Unfavorable Diet 235 (40.6) 235 (40.9) 
Normal Diet 209 (36.1) 192 (33.4) 
Favorable Diet 135 (23.3) 147 (25.6) 

Abbreviations: BMI, body mass index; HNR, Heinz Nixdorf Recall; IQR, interquartile range; MRI, 380 
magnetic resonance imaging; SD, standard deviation 381 
aData available only at baseline examination for neighborhood unemployment, cumulative smoking, and alcohol 382 
consumption  383 

 384 

Air pollution levels at participants’ homes were below the European Union Air Quality 385 

Standards for annual concentrations (40 µg/m3 for NO2 and PM10, 25 µg/m3 for PM2.5; Table 2; 386 
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European Parliament, Council of the European Union, 2008), but above the World Health 387 

Organization’s Air Quality Guidelines for annual PM10 and PM2.5 (20 µg/m3 and 10 µg/m3, 388 

respectively; World Health Organization [2006]). Mean 24-hour outdoor noise levels were 389 

slightly below the European Lden guideline of 53 dB(A), with 203 participants (35.1%) exposed 390 

to noise levels above this recommendation (World Health Organization, 2018). AP exposures 391 

were moderately to highly correlated with each other (Spearman correlations [ρ]: 0.49-0.91) and 392 

weakly correlated with noise exposures (ρ: 0.08-0.41; Table S2). Outdoor Lden and Lnight were 393 

highly correlated (ρ: 0.99), whereas outdoor and indoor noise exposures were only moderately 394 

correlated (ρ: 0.40-0.50; Table S2). LGI values were, on average, higher in the posterior regions 395 

of the DMN than in the anterior DMN, whereas cortical thickness was slightly lower in the 396 

medial pDMN compared to other regions (Table S3).  397 

 398 

Table 2. Description of long-term air pollution and noise exposure levels at the 
baseline residential addresses of 1000BRAINS study participants. 
Exposure Mean ± SD or n (%) Interquartile Range 
Air Pollution   

PM10 (µg/m3) 27.5 ± 1.8 2.1 
PM2.5 (µg/m3) 18.2 ± 1.0 1.4 
PM2.5abs (0.0001/m) 1.5 ± 0.4 0.3 
NO2 (µg/m3) 29.5 ± 4.6 5.2 
PNAM (n/mL) 3,725 ± 435 612 
Near Major Road (Yes) 109 (18.8) - 

   
Noise    

Outdoor Lden (dB[A]) 53.4 ± 8.4 13.1 
Outdoor Lnight (dB[A]) 44.4 ± 8.3 12.7 
Indoor Lden (dB[A]) 35.1 ± 12.5 20.6 
Indoor Lnight (dB[A]) 27.3 ± 13.8 24.1 

Abbreviations: dB(A), A-weighted decibels; Lden, outdoor 24-hour weighted noise; Lnight, outdoor 399 
nighttime noise; NO2, nitrogen dioxide; PM10, particulate matter with diameter ≤10 µm; PM2.5, 400 
particulate matter with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode 401 
particle number concentration; SD, standard deviation 402 

 403 
3.2 Model Adjustment & Main Results 404 

 Only results from the Main Model (Model 3) will be presented in detail here, as increasing 405 

adjustment for potential confounders did not result in large changes in the estimated associations 406 

between AP, noise, and brain structure measures (Fig. S3). Interestingly, adjustment for co-407 

exposures (i.e., Lden for AP exposures and PM2.5abs for noise exposures) did not result in 408 

qualitative changes in the estimated associations. 409 
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 For lGI, no consistent associations were observable with AP and noise exposures across the 410 

various regions and two hemispheres (Fig. 3; AP estimates in Table S4). Point estimates for AP 411 

exposures were all associated with slightly lower lGI in the left aDMN, whereas several AP 412 

exposures were associated with slightly higher lGI in the lateral pDMN and medial pDMN. 413 

Results for outdoor noise exposures were similarly mixed (Fig. 3). Age at MRI was inversely 414 

associated with lGI in the lateral pDMN regions (Fig. 3).  415 

 416 

 417 
Figure 3. Associations between AP, noise, and lGI within regions of the DMN in the right and left hemispheres of 418 
the brain. AP and noise estimates were calculated per IQR increase and per 10 dB(A), respectively, and are shown 419 
with 95% confidence intervals. Models were adjusted for age at MRI, sex, alcohol consumption, body mass index, 420 
diet, physical activity, smoking status, cumulative smoking, and environmental tobacco smoke exposure. AP models 421 
were additionally adjusted for 24-hour outdoor noise and noise models were adjusted for PM2.5abs. For reference, age 422 
at MRI and lGI was also modeled per 1-year increase and adjusting for sociodemographic variables included in the 423 
AP models as well as iSES and nSES. 424 
Abbreviations: aDMN, anterior Default Mode Network; AP, air pollution; DMN, Default Mode Network; pDMN, 425 
posterior Default Mode Network; iSES, individual socioeconomic status; Lden, outdoor 24-hour weighted noise; lGI, 426 
local gyrification index; Lnight, outdoor nighttime noise; MRI, magnetic resonance imaging; NO2, nitrogen dioxide; 427 
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nSES, neighborhood socioeconomic status; PM10, particulate matter with diameter ≤10 µm; PM2.5, particulate matter 428 
with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number concentration 429 
 430 
 Higher AP exposure was weakly associated with lower cortical thickness in the right 431 

aDMN and lateral pDMN for all air pollutants (Fig. 4; AP estimates in Table S5). In the left 432 

aDMN, results were more inconsistent, with some negative and null associations present. In 433 

contrast, increases in outdoor 24-hour and nighttime noise exposure were associated with higher 434 

cortical thickness in the right aDMN. Age at MRI was inversely associated with cortical 435 

thickness in all regions, with strongest associations apparent in the pDMN regions (Fig. 4). In the 436 

right aDMN, AP exposures were more inversely associated with cortical thickness (e.g., -0.010 437 

[95% CI: -0.022, 0.002] per IQR increase in PM2.5abs) than a 1-year increase in age (-0.001 mm 438 

[95% CI: -0.003, 0.001] per 1-year increase).  439 

 440 
Figure 4. Associations between AP, noise, and change in cortical thickness (mm) within regions of the DMN in the 441 
right and left hemispheres of the brain. AP and noise estimates were calculated per IQR increase and per 10 dB(A), 442 
respectively, and are shown with 95% confidence intervals. Models were adjusted for age at MRI, sex, alcohol 443 
consumption, body mass index, diet, physical activity, smoking status, cumulative smoking, and environmental 444 
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tobacco smoke exposure. AP models were additionally adjusted for 24-hour outdoor noise and noise models were 445 
adjusted for PM2.5abs. For reference, age at MRI and cortical thickness was also modeled, with associations estimated 446 
per 1-year increase and adjusted for sociodemographic variables included in the AP models as well as iSES and 447 
nSES. 448 
Abbreviations: aDMN, anterior Default Mode Network; AP, air pollution; DMN, Default Mode Network; pDMN, 449 
posterior Default Mode Network; iSES, individual socioeconomic status; Lden, outdoor 24-hour weighted noise; 450 
Lnight, outdoor nighttime noise; MRI, magnetic resonance imaging; NO2, nitrogen dioxide; nSES, neighborhood 451 
socioeconomic status; PM10, particulate matter with diameter ≤10 µm; PM2.5, particulate matter with diameter ≤2.5 452 
µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number concentration 453 
 454 

 In the multipollutant models, associations for lGI (Table S4) and cortical thickness (Table 455 

S5) were similar to those estimated in the single pollutant models, with the exception of lGI in 456 

the lateral pDMN. When restricting the analyses to the smaller group with complete indoor noise 457 

exposure data, we observed similar associations for both outdoor and indoor noise exposures 458 

(Fig. S4). Positive associations between outdoor noise and cortical thickness in the right aDMN 459 

were also reflected in the indoor estimates. For lGI in the aDMN as well as for cortical thickness 460 

in the left lateral pDMN, indoor noise associations were attenuated compared to the positive 461 

associations observed for outdoor exposures. 462 

 463 

3.3 Effect Modification  464 

For age, no consistent differences were apparent for lGI in the aDMN and medial pDMN 465 

(Fig. S5a). In the right lateral pDMN, most AP exposures were weakly positively associated with 466 

lGI among older participants but not younger participants. There were no clear variations in the 467 

association between AP and cortical thickness by age, though inverse associations with AP were 468 

observed only for younger participants in the left aDMN (Fig. S5b). For noise, we observed that 469 

increased outdoor noise was positively associated with cortical thickness in the lateral pDMN 470 

among younger participants whereas estimates were null or slightly negative for older 471 

participants.   472 

 473 

3.4 Sensitivity Analyses 474 

 Addition of individual and neighborhood SES did not qualitatively alter the associations we 475 

estimated for lGI or cortical thickness (Fig. S3). Use of updated lifestyle variable data also did 476 

not affect the estimated associations (Table S6). When updating analyses to use exposures from 477 

participants’ addresses at the 5-year HNR follow-up examination, we observed very similar 478 

estimates of association for lGI and cortical thickness as in the main analysis (Fig. S6). Similarly, 479 

restriction of the study population to those who did not move between baseline and 10-year HNR 480 
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follow-up (n=442) or to only those working less than 15 hours per week (n=429) did not result in 481 

large changes in the associations for lGI or cortical thickness (Fig. S6). Models using residential 482 

nearness to a major road (yes/no) broadly yielded weak negative associations with lGI and 483 

cortical thickness for those living close to major roads (Table S7). 484 

 485 

4. Discussion 486 

 In a study of older adults within the 1000BRAINS study, we observed no strong 487 

associations between air pollution, noise, and brain structure measures of the DMN. 488 

Nevertheless, higher AP exposures were weakly associated with cortical thinning in the right 489 

aDMN and lateral pDMN with mixed results for noise. These results contribute to a small but 490 

growing literature investigating ambient environmental exposures and brain structure, while 491 

simultaneously confirming that connections between these exposures and the brain are complex 492 

and poorly understood at present. 493 

 494 
4.1 Comparison to Prior Studies on AP and Brain Structure 495 

 Most studies connecting air pollution to brain health have focused primarily on measures of 496 

cognitive function. AP exposure has been linked to impaired cognitive development among 497 

children (D'Angiulli, 2018) as well as faster cognitive decline among adults (e.g., Kulick et al., 498 

2020; Tzivian et al., 2015; Weuve et al., 2012). Additionally, epidemiologic studies have shown 499 

associations between AP and increased risk of neurodegenerative diseases such as Alzheimer’s 500 

and dementia (Carey et al., 2018; Chen et al., 2017; Oudin et al., 2018). At present, studies on AP 501 

exposures and structural parameters of the brain are limited and have focused predominantly on 502 

volumetric measures (e.g., white matter volume [WMV], gray matter volume [GMV], total 503 

volume) or white matter hyperintensities. Most studies have observed decreases in one or more 504 

measures of brain volume with increased AP exposure (e.g., lower GMV and WMV in Casanova 505 

et al., 2016, lower WMV in Chen et al., 2015), with some variability by exposure and brain 506 

region. For example, in four studies within the UK Biobank, NO2 exposure was associated with 507 

lower total GMV (Erickson et al., 2020) and prefrontal cortex volume (Gale et al., 2020), but not 508 

with GMV in the hippocampus (Hedges et al., 2019) or thalamus (Hedges et al., 2020). Windows 509 

of exposure also ranged from 2-year (Kulick et al., 2017) up to 17-year cumulative average 510 

exposure prior to MRI (Power et al., 2018).  511 
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 To our knowledge, the only prior study to investigate AP and lGI was also conducted within 512 

the 1000BRAINS study and observed weak negative associations between AP exposures and lGI 513 

in the posterior regions of the fronto-parietal network (Nußbaum et al., 2020). AP and cortical 514 

thickness has been investigated in two recent studies on adults (Cho et al., 2020; Crous-Bou et al., 515 

2020). In 957 adults, Cho et al. (2020) found that AP was associated with cortical thinning in frontal 516 

and temporal brain regions together with cortical thickening in occipital and cingulate brain 517 

regions. Within a cohort of healthy middle-aged adults with increased risk of Alzheimer’s Disease 518 

(AD), Crous-Bou et al. (2020) observed associations between AP and cortical thinning in most 519 

AD-associated brain areas. Our results support these results that AP may be linked to cortical 520 

thinning in certain regions of the brain, but future studies investigating AP and brain structure using 521 

longitudinal data are needed to evaluate whether these associations represent true AP-induced 522 

changes in brain structures over time. 523 

 Unlike most prior studies, we focused on a specific functionally-defined network rather 524 

than using a whole-brain or anatomically-defined approach. The Default Mode Network is one of 525 

the most studied functional brain networks and plays an important role in memory recall as well 526 

as self-referential thought (Raichle, 2015). Within aging research, typical age-related changes in 527 

the deactivation of the DMN have been observed (Hafkemeijer et al., 2012). Additionally, the 528 

DMN is of particular interest in aging research because it is known to undergo atrophy, changes 529 

in functional connectivity (e.g., the PASA theory), and amyloid deposition with increasing age 530 

(Hafkemeijer et al., 2012).  531 

 When comparing our lGI results to patterns observed with aging, we observed no clear 532 

associations between AP, noise, and lGI as well as no evidence supporting a PASA pattern in the 533 

associations, which had been observed for AP and lGI levels in the fronto-parietal network 534 

(Nußbaum et al., 2020). This may be due to differences in the activation patterns of the two 535 

networks, as the DMN is most active during resting states whereas the fronto-parietal network is 536 

most active during externally-focused tasks. When considering our cortical thickness results and 537 

aging, the inverse associations between AP and cortical thickness in several regions of the right 538 

aDMN align with the right hemi-aging model (Brown and Jaffe, 1975; Dolcos et al., 2002). 539 

Nevertheless, like with lGI, we observed no pattern of association consistent with the PASA 540 

theory for cortical thickness.  541 

 While changes in cortical thickness and lGI can both be used to assess brain atrophy and 542 

both decrease with age (Hogstrom et al., 2013), it is not entirely surprising that we observed 543 
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different patterns of associations between the two, as prior studies have shown them to be 544 

uncorrelated or weakly negatively correlated (Gautam et al., 2015). This may be due to the fact 545 

that while cortical thickness reflects gray matter, lGI is a measure dependent on both gray and 546 

white matter. While it is not fully clear what AP-induced decreases in one measure but not in the 547 

other means for cognition or brain function, future studies should use several measures of brain 548 

structure in order to better understand how AP and noise may be influencing both white and gray 549 

matter in the brain (Hogstrom et al., 2013). Furthermore, few studies have analyzed how AP 550 

exposure may influence the patterns of functional communication in the brain (Pujol et al., 551 

2016a; Pujol et al., 2016b). As brain signaling occurs both within networks as well as between 552 

networks, further studies are needed on how environmental exposures may affect both types of 553 

communication and whether AP-induced changes in brain structure are also reflected in changes 554 

in functional connectivity.  555 

 556 

4.2 Noise 557 

 Chronic noise is an important environmental exposure that is known to cause adverse 558 

health effects, including increased risk of cardiovascular disease (Münzel et al., 2018), sleep 559 

disturbances (Basner et al., 2014), and depression (Hegewald et al., 2020; Orban et al., 2016). 560 

Nevertheless, very few epidemiologic studies have evaluated how long-term noise exposures may 561 

influence adult brain structure (Cheng et al., 2019; Crous-Bou et al., 2020; Nußbaum et al., 562 

2020). In Cheng et al. (2019), fighter jet pilots had lower hippocampal GMV and worse working 563 

memory compared to matched controls. Using data from a healthy middle-aged cohort with 564 

increased AD risk, Crous-Bou et al. (2020) observed no statistically significant associations 565 

between noise and hippocampal volume, ventricle volume, or cortical thickness in brain regions 566 

vulnerable to AD. Contrary to expected, Nussbaum et al. (2020) observed positive associations 567 

between chronic outdoor noise and lGI in some regions of the fronto-parietal network. 568 

Nevertheless, indoor noise was not considered in the Nussbaum et al. (2020) study.  569 

We observed positive associations between outdoor noise exposures and structural brain 570 

measures in several areas of the brain, with the strongest associations present for the aDMN. 571 

These results align with those seen by Nussbaum et al. (2020), where the positive associations 572 

were also observed primarily in the frontal regions of the brain. Nevertheless, in most cases, the 573 

positive associations we observed for outdoor noise exposures were attenuated for indoor 574 

exposures. Differences between outdoor and indoor noise estimates may also be due to 575 
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systematic differences in window type and use for persons with high noise exposure (e.g., more 576 

noise-proof windows and less time with windows open for highly exposed participants) that are 577 

only accounted for in the indoor noise estimates.  578 

 While little is known about noise and brain structure, some evidence exists showing that 579 

higher noise levels may be associated with decreased cognitive function, particularly among 580 

children (Clark and Paunovic, 2018). Studies on adults are more limited, particularly 581 

investigating long-term noise exposures, but the evidence seems to support that chronic noise 582 

exposure is associated with decreased cognitive function (Cheng et al., 2019; Fuks et al., 2019; 583 

Nußbaum et al., 2020; Tzivian et al., 2016b). While these studies do not provide evidence for 584 

direct comparison to our results on brain structure, they do support the hypothesis that 585 

environmental noise exposures may be important determinants of brain health and therefore 586 

influential in shaping morphological parameters. 587 

 588 

4.3 Potential Mechanisms 589 

 Air pollution is hypothesized to influence health through several main pathways: first, by 590 

initiating local inflammatory processes in the lungs that can spawn systemic inflammation under 591 

chronic exposure; secondly, by direct translocation of small particles across the alveoli and into 592 

the blood stream, where they can travel and damage organs across the body; and thirdly, through 593 

activation and dysregulation of the autonomic nervous system (Block and Calderón-Garcidueñas, 594 

2009). In recent years, evidence has emerged that small particles may also be able to enter into 595 

the brain directly via the olfactory bulb (Oberdörster et al., 2004). Systemic inflammation and 596 

circulating air pollutants are known to interact with the blood brain barrier, including the 597 

diffusion of cytokines across it and the initiation of neuroinflammatory cascades (Genc et al., 598 

2012). Neuroinflammation is a hallmark of several neurologic diseases (e.g., Alzheimer’s 599 

disease, Parkinson’s Disease) as well as being associated with neuronal damage and decreases in 600 

white matter volume (Allen et al., 2017; Block and Calderón-Garcidueñas, 2009). Direct 601 

deposition of AP particles in the brain via the olfactory bulb may also result in the chronic 602 

activation of microglial cells and subsequently chronic production of pro-inflammatory species 603 

and oxidative stress (Block and Calderón-Garcidueñas, 2009; Block and Hong, 2005). With 604 

chronic AP exposure, these mechanisms may lead to structural changes in the brain. At present, it 605 

remains unclear as to why AP exposure may affect certain regions but not others in the brain. 606 
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One possible explanation for effects in frontal regions is through the direct deposition of particles 607 

via the olfactory bulb pathway. 608 

 Noise exposure is hypothesized to adversely influence human health through somewhat 609 

different pathways than AP. It is known that chronic noise exposure increases levels of 610 

annoyance and stress, which can activate the autonomic nervous system/hypothalamus-pituitary-611 

adrenal axis (Jafari et al., 2019). Noise may also influence health by decreasing sleep quality and 612 

subsequently negatively affecting metabolism (Basner et al., 2014). At present, the ways by 613 

which noise exposure may influence brain structure remains unknown. Some possibilities include 614 

the induction of persistent tau pathology and altered auditory input that may cause changes in the 615 

hippocampus and cortex (Paul et al., 2019); increases in stress-induced free radicals, which may 616 

go on to affect cell morphology; increased glucocorticoids that can alter synaptic terminal 617 

structures and inhibit neuronal regeneration in some regions; and alterations in neurotransmitters 618 

that may affect synaptic plasticity (Arjunan and Rajan, 2020). Chronic noise has also been linked 619 

to increased risk of cardiovascular disease, which is associated with decreased cognitive function 620 

(Barnes, 2015). Lower cardiorespiratory fitness, which may result from disease, has also been 621 

associated with faster rates of brain atrophy (Barnes, 2015). As mentioned above, the mixed 622 

associations we observed for noise exposures, lGI, and cortical thickness may be due to error in 623 

exposure estimation, but it may also reflect compensatory mechanisms in certain areas of the 624 

brain. Should noise adversely affect other areas that have not been investigated up to this point, 625 

increased or non-changing lGI values in certain areas may reflect compensatory mechanisms on 626 

the part of the brain in order to offset the damage elsewhere. Further studies are needed looking 627 

at long-term effects of noise, particularly low-level chronic noise, on the brain in order to better 628 

understand the mix of positive and negative associations we observed in our study.  629 

 630 

4.4 Study Strengths and Weaknesses 631 

 There are several limitations to our study. While the exposures were modeled for periods 632 

prior to the MRI examinations and ought to represent long-term exposures, we cannot draw 633 

longitudinal, causal conclusions as we do not have MRI data at baseline and therefore cannot 634 

identify exactly when any AP-associated structural changes may have occurred. Exposure 635 

misclassification in our exposures also exists, as they are modeled exposures and participants 636 

spent time other places than their home address. Nevertheless, sensitivity analyses restricted to 637 

those who did not move over the study period or were not working showed no qualitative change 638 
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in our results. Some of the AP exposures are highly correlated and, even after conducting 639 

multipollutant models, it is difficult to tease out which air pollutant may have be most strongly 640 

associated with brain structure. Future analyses including greenspace may also be of interest. Our 641 

indoor noise estimates were calculated based on behavior and window information collected via 642 

questionnaire and therefore have not been validated with on-site measurements. The study 643 

population in this study is also small and it is likely that we are somewhat underpowered to fully 644 

evaluate potential associations, particularly in the effect modification analyses. Nevertheless, 645 

efforts to obtain AP and noise exposure information for the HNR MultiGeneration Study 646 

participants in the 1000BRAINS Study are currently being planned and would result in an almost 647 

doubling of available participants for analysis. The results from this study should also be 648 

considered in the context participants’ air pollution exposure levels, which while higher than 649 

recommended by the 2005 WHO guidelines (World Health Organization Occupational and 650 

Environmental Health Team, 2006), are lower than those observed in other regions of the world, 651 

including much of Asia and the Middle East. Establishment of cohorts with AP, noise, and MRI 652 

data in areas with higher exposure levels would provide insight whether and what kind of dose-653 

response relationship may exist between AP and structural brain measures.  654 

 Our study also has several strengths. First, the 1000BRAINS study includes rich 655 

demographic and lifestyle data, which allowed us to adjust for many potential confounders. We 656 

were also able to leverage extensive exposure data to evaluate several novel exposures, including 657 

PNAM. Few prior studies have investigated whether chronic noise exposures influence brain 658 

structure or whether quasi-ultrafine particles may be particularly influential due to their ability to 659 

pass through the olfactory bulb. This is also one of the first studies to adjust for chronic noise, a 660 

potentially important co-exposure from traffic, when estimating the association between AP and 661 

brain structure. Finally, we focused in this study on brain structural measures within an important 662 

functional network of the brain, a strategy which has not been employed in many prior studies 663 

and will hopefully inform future studies on environmental exposures and functional connectivity 664 

in the brain. As mentioned previously, future studies with long-term follow-up periods are needed 665 

to better understand how long-term AP may influence brain health over the lifespan and help 666 

elucidate potential causal pathways. There also remains a need for studies with information on 667 

several aspects of brain health, such that the interplay between air pollution, structural measures, 668 

functional connectivity, and neurological diseases (e.g., Alzheimer’s disease) can be examined 669 

together within the same participants.  670 
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 671 

4.5 Conclusion 672 

 Overall, long-term air pollution and noise exposures were not consistently associated with 673 

the structural brain measures of lGI and cortical thickness within the DMN, with the exception of 674 

weak negative associations between AP and cortical thickness in the right hemisphere. As few 675 

prior studies exist on environmental exposures and brain structure within functional networks, 676 

further studies into how AP and noise may alter both brain structure as well as brain signaling are 677 

needed to better understand the role the environment plays in affecting human health across the 678 

whole body.  679 
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Table S1. Comparison of baseline sociodemographic, exposure, and outcome characteristics for all participants at the 10-year 
HNR follow-up examination (n=3,087), the 1000BRAINS participants included (n=579) in the analyses, and the 
1000BRAINS participants excluded from current analyses (n=109). All variables were collected for the HNR baseline 
examination (2000-2003), except for age at MRI, lGI, and cortical thickness. 

Variable 

Attendees of 10-year 
HNR Examination 

(n=3,087) 
 

Mean ± SD or Median 
[IQR] or n (%) 

Included 
(n=579) 

 
Mean ± SD or 
Median [IQR] 

or n (%) 

Excluded (n=109) 

Mean ± SD or 
Median [IQR] or 

n (%) 

Missing 
(n) 

Age at HNR Baseline (years) 58.4 ± 7.3 56.2 ± 6.7 57.2 ± 7.2 0 
Age at MRI (years)  66.5 ± 6.7 67.6 ± 7.1 0 
BMI (kg/m2) 27.5 ± 4.4 27.3 ± 4.1 27.1 ± 3.8 1 
Neighborhood Unemployment (%) 12.3 ± 3.4 12.1 ± 3.3 12.6 ± 3.3 0 
Cumulative Smoking (pack-years) 19.3 [28.0] 18.8 [25.0] 16.1 [25.9] 9 
Sex, Female 1,580 (51.2) 265 (45.8) 40 (36.7) 0 
Formal Education    0 

≤10 years 266 (8.6) 32 (5.5) 5 (4.6) - 
11-13 years 1,698 (55.0) 302 (52.2) 54 (49.5) - 
14-17 years 725 (23.5) 143 (24.7) 34 (31.2) - 
≥18 years 394 (12.8) 102 (17.6) 16 (14.7) - 

Physical Activity, Yes 1,833 (59.4) 362 (62.5) 71 (65.1) 0 
Smoking Status    0 

Never Smoker 1,348 (43.7) 250 (43.2) 44 (40.4) - 
Former Smoker 1,127 (36.5) 214 (37.0) 45 (41.3) - 
Current Smoker 612 (19.8) 115 (19.9) 20 (18.3) - 

Environmental Tobacco Smoke Exposure, Yes 1,085 (35.1) 225 (38.9) 32 (29.0) 0 
Alcohol Consumption (Drinks/Week)    7 

Never 1,418 (45.9) 226 (39.0) 29 (28.4) - 
1 to 3 486 (15.7) 96 (16.6) 12 (11.8) - 
>3 to 6 345 (11.1) 80 (13.8) 16 (15.7) - 
>6 to 14 396 (12.8) 87 (15.0) 23 (22.5) - 
>14 388 (12.6) 90 (15.5) 22 (21.6) - 

Diet    4 
Unfavorable Diet 1,132 (36.7) 235 (40.6) 52 (49.5) - 
Normal Diet 1,067 (34.6) 209 (36.1) 28 (26.7) - 
Favorable Diet 846 (27.4) 135 (23.3) 25 (23.8) - 

Environmental Exposures     
PM10 (µg/m3) 27.7 ± 1.9 27.5 ± 1.8 27.7 ± 1.7 0 
PM2.5 (µg/m3) 18.4 ± 1.1 18.2 ± 1.0 18.4 ± 1.0 0 
PM2.5abs (0.0001/m) 1.6 ± 0.4 1.5 ± 0.4 1.6 ± 0.3 0 
NO2 (µg/m3) 30.1 ± 4.9 29.5 ± 4.6 30.1 ± 4.9 0 
PNAM (n/mL) 3,756.5 ± 444.6 3,725 ± 435 3777.4 ± 461.7 0 
O-Lden (dB[A]) 54.0 ± 8.7 53.4 ± 8.4 54.3 ± 8.2 2 
O-Lnight (db[A]) 45.0 ± 8.6 44.4 ± 8.3 45.3 ± 8.1 2 
I- Lden (dB[A]) 34.7 ± 14.2 35.1 ± 12.5 33.4 ± 12.7 13 
I-Lnight (dB[A]) 28.0 ± 14.0 27.3 ± 13.8 27.3 ± 14.8 13 

lGI     
Left aDMN  2.0 ± 0.1 2.0 ± 0.1 76 
Left Medial pDMN  2.8 ± 0.2 2.8 ± 0.1 76 
Left Lateral pDMN  3.0 ± 0.1 3.0 ± 0.1 76 
Right aDMN  2.1 ± 0.1 2.1 ± 0.1 85 



Right Medial pDMN  2.9 ± 0.2 2.8 ± 0.2 85 
Right Lateral pDMN  3.0 ± 0.1 3.0 ± 0.1 85 

Cortical Thickness (mm)     
Left aDMN  2.4 ± 0.2 2.5 ± 0.1 72 
Left Medial pDMN  2.2± 0.1 2.2 ± 0.1 72 
Left Lateral pDMN  2.4 ± 0.1 2.4 ± 0.2 72 
Right aDMN  2.4 ± 0.1 2.5 ± 0.1 72 
Right Medial pDMN  2.2 ± 0.1 2.2 ± 0.1 72 
Right Lateral pDMN  2.5 ± 0.2 2.5 ± 0.2 72 

Abbreviations: aDMN, anterior Default Mode Network; BMI, body mass index; HNR, Heinz Nixdorf Recall; I-Lden, 
indoor 24-hour weighted noise; I-Lnight, indoor nighttime noise; IQR, interquartile range; lGI, local gyrification 
index; MRI, magnetic resonance imaging; NO2, nitrogen dioxide; O-Lden, outdoor 24-hour weighted noise; O-Lnight, 
outdoor nighttime noise; pDMN, posterior Default Mode Network; PM10, particulate matter with diameter ≤10 µm; 
PM2.5, particulate matter with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle 
number concentration; SD, standard deviation



Table S2. Spearman correlations between long-term air pollution and chronic traffic noise exposures. 

 PM10 PM2.5 PM2.5abs NO2 PNAM Lden Lnight I-Lden I-Lnight 
PM10 1 0.91 0.91 0.54 0.49 0.23 0.24 0.12 0.15 

PM2.5  1 0.89 0.64 0.72 0.24 0.24 0.11 0.14 

PM2.5abs   1 0.61 0.52 0.40 0.41 0.22 0.25 

NO2    1 0.57 0.30 0.30 0.14 0.19 

PNAM     1 0.20 0.22 0.08 0.11 

Lden  
     1 0.99 0.50 0.40 

Lnight        1 0.50 0.40 

I-Lden        1 0.40 

I-Lnight         1 
Abbreviations: I-Lden, indoor 24-hour weighted noise; I-Lnight, indoor nighttime noise; NO2, nitrogen dioxide; Lden, 
outdoor 24-hour weighted noise; Lnight, outdoor nighttime noise; PM10, particulate matter with diameter ≤10 µm; 
PM2.5, particulate matter with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle 
number concentration 

 

  



Table S3. Description of brain structure measures (lGI, cortical thickness) 
in the three regions of the DMN across both hemispheres. 

 Left 
Mean ± SD 

Right 
Mean ± SD 

lGI   
aDMN 2.0 ± 0.1 2.1 ± 0.1 
Medial pDMN 2.8 ± 0.2 2.9 ± 0.2 
Lateral pDMN 3.0 ± 0.1 3.0 ± 0.1 

Cortical Thickness (mm)   
aDMN 2.4 ± 0.2 2.4 ± 0.1 
Medial pDMN 2.2 ± 0.1 2.2 ± 0.1 
Lateral pDMN 2.4 ± 0.1 2.5 ± 0.1 

Abbreviations: aDMN, anterior Default Mode Network; lGI, local gyrification index; 
pDMN, posterior Default Mode Network; SD, standard deviation 

 

  



Table S4.  Associations between an IQR increase in air pollution and lGI, adjusted for Main Model covariates, in the Main 
Model as well as in multipollutant models adjusting separately for NO2, PNAM, and PM2.5. 
Air Pollutant Main Model Adj. for NO2 Adj. for PNAM Adj. for PM2.5 
Left aDMN     

PM10 (µg/m3) -0.006 (-0.014, 0.002) -0.004 (-0.013, 0.006) -0.006(-0.015, 0.003) - 
PM2.5 (µg/m3) -0.006 (-0.016, 0.004) -0.002 (-0.014, 0.010) -0.006 (-0.019, 0.007) - 
PM2.5abs (0.0001/m) -0.003 (-0.010, 0.004) 0.002 (-0.008, 0.011) -0.002 (-0.010, 0.006) - 
NO2 (µg/m3) -0.007 (-0.015, 0.002) - -0.007 (-0.016, 0.003) -0.006 (-0.016, 0.005) 
PNAM (n/mL) -0.004 (-0.014, 0.006) -0.001 (-0.012, 0.011) -  0.000 (-0.013, 0.014) 

Left Lateral pDMN     
PM10 (µg/m3)  0.001 (-0.012, 0.013) 0.004 (-0.011, 0.018) 0.000 (-0.014, 0.014) - 
PM2.5 (µg/m3)  0.002 (-0.012, 0.017) 0.008 (-0.010, 0.027)  0.002 (-0.018, 0.022) - 
PM2.5abs (0.0001/m)  0.010 (-0.001, 0.021) 0.023 (0.008, 0.038)  0.011 (-0.001, 0.023) - 
NO2 (µg/m3) -0.004 (-0.017, 0.009) - -0.007 (-0.021, 0.008) -0.009 (-0.025, 0.007) 
PNAM (n/mL)  0.002 (-0.013, 0.017) 0.005 (-0.012, 0.023) -  0.000 (-0.020, 0.021) 

Left Medial pDMN     
PM10 (µg/m3) -0.001 (-0.016, 0.015) 0.002 (-0.016, 0.020) -0.002 (-0.019, 0.014) - 
PM2.5 (µg/m3)  0.003 (-0.015, 0.021) 0.009 (-0.013, 0.031)  0.001 (-0.024, 0.025) - 
PM2.5abs (0.0001/m) -0.002 (-0.015, 0.012) 0.001 (-0.018, 0.019) -0.003 (-0.018, 0.011) - 
NO2 (µg/m3) -0.004 (-0.020, 0.012) - -0.007 (-0.025, 0.011) -0.008 (-0.028, 0.011) 
PNAM (n/mL)  0.004 (-0.014, 0.023) 0.008 (-0.013, 0.029) -  0.004 (-0.021, 0.029) 

Right aDMN     
PM10 (µg/m3) -0.005 (-0.013, 0.003) -0.005 (-0.015, 0.005) -0.005 (-0.014, 0.004) - 
PM2.5 (µg/m3) -0.003 (-0.013, 0.006) -0.003 (-0.015, 0.009) -0.003 (-0.016, 0.010) - 
PM2.5abs (0.0001/m)  0.001 (-0.006, 0.008) 0.004 (-0.006, 0.014)  0.002 (-0.006, 0.009) - 
NO2 (µg/m3) -0.002 (-0.011, 0.006) - -0.002 (-0.011, 0.008) -0.001 (-0.011, 0.010) 
PNAM (n/mL) -0.003 (-0.013, 0.008) -0.002 (-0.013, 0.010) - 0.000 (-0.014, 0.013) 

Right Lateral pDMN     
PM10 (µg/m3) -0.001 (-0.015, 0.013) 0.003 (-0.013, 0.019) -0.005 (-0.019, 0.010) - 
PM2.5 (µg/m3)  0.004 (-0.012, 0.020) 0.013 (-0.007, 0.032) -0.004 (-0.025, 0.017) - 
PM2.5abs (0.0001/m)  0.007 (-0.005, 0.019) 0.019 (0.003, 0.035)  0.005 (-0.008, 0.018) - 
NO2 (µg/m3) -0.007 (-0.021, 0.007) - -0.013 (-0.029,  0.002) -0.014 (-0.031, 0.004) 
PNAM (n/mL)  0.009 (-0.007, 0.026) 0.016 (-0.002, 0.035) -  0.012 (-0.010, 0.034) 

Right Medial pDMN     
PM10 (µg/m3)  0.003 (-0.014, 0.020) 0.004 (-0.015, 0.023)  0.003 (-0.015, 0.021) - 
PM2.5 (µg/m3)  0.006 (-0.013, 0.026) 0.009 (-0.014, 0.033)  0.011 (-0.015,  0.037) - 
PM2.5abs (0.0001/m) 0.000 (-0.015, 0.014) -0.007 (-0.020, 0.019) -0.000 (-0.016, 0.015) - 
NO2 (µg/m3)  0.000 (-0.017, 0.017) -  0.000 (-0.019, 0.019) -0.005 (-0.025, 0.016) 
PNAM (n/mL)  0.000 (-0.019, 0.020) 0.000 (-0.022, 0.023) - -0.007 (-0.034, 0.020) 

Abbreviations: aDMN, anterior Default Mode Network; lGI, local gyrification index; NO2, nitrogen dioxide; pDMN, 
posterior Default Mode Network; PM10, particulate matter with diameter ≤10 µm; PM2.5, particulate matter with 
diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number concentration. 

 

  



Table S5.  Associations between an IQR increase in air pollution and cortical thickness (mm) in the Main Model as well as 
in multipollutant models additionally adjusting for NO2, PNAM, and PM2.5 (individually). 
Air Pollutant Main Model Adj. for NO2 Adj. for PNAM Adj. for PM2.5 
Left aDMN     

PM10 (µg/m3)  0.000 (-0.015, 0.016)  0.001 (-0.017, 0.018)  0.005 (-0.012, 0.022) - 
PM2.5 (µg/m3) -0.009 (-0.027, 0.009) -0.013 (-0.035, 0.009) -0.002 (-0.026, 0.022) - 
PM2.5abs (0.0001/m) -0.004 (-0.017, 0.010) -0.006 (-0.024, 0.012)  -0.001 (-0.015, 0.014) - 
NO2 (µg/m3) -0.001(-0.016, 0.015) - 0.005 (-0.012, 0.023)  0.006 (-0.013, 0.025) 
PNAM (n/mL) -0.012 (-0.031, 0.006) -0.015 (-0.036, 0.005) - -0.011 (-0.036, 0.014) 

Left Lateral pDMN     
PM10 (µg/m3) -0.005 (-0.018, 0.008) -0.008 (-0.024, 0.007)  -0.008 (-0.022, 0.007) - 
PM2.5 (µg/m3) -0.003 (-0.018, 0.013) -0.007 (-0.026, 0.012) -0.011 (-0.032, 0.010) - 
PM2.5abs (0.0001/m) -0.002 (-0.014, 0.009) -0.007 (-0.022, 0.008) -0.004 (-0.016, 0.008) - 
NO2 (µg/m3)  0.003 (-0.011, 0.016) -  0.001 (-0.014, 0.016)  0.006 (-0.010, 0.023) 
PNAM (n/mL)  0.005 (-0.011, 0.021) 0.004 (-0.014, 0.022) -  0.012 (-0.009, 0.034) 

Left Medial pDMN     
PM10 (µg/m3) -0.003 (-0.013, 0.007) -0.003 (-0.014, 0.009) -0.002 (-0.013, 0.009) - 
PM2.5 (µg/m3) -0.006 (-0.017, 0.006) -0.008 (-0.022, 0.007) -0.008 (-0.023, 0.008) - 
PM2.5abs (0.0001/m) -0.002 (-0.010, 0.007) -0.002 (-0.013, 0.010)  -0.001 (-0.010, 0.008) - 
NO2 (µg/m3) -0.001 (-0.011, 0.009) - 0.000 (-0.012, 0.011)  0.003 (-0.010, 0.015) 
PNAM (n/mL) -0.003 (-0.015, 0.009) -0.002 (-0.016, 0.011) -  0.003 (-0.014, 0.019) 

Right aDMN     
PM10 (µg/m3) -0.004 (-0.018, 0.010) 0.000 (-0.016, 0.016) -0.002 (-0.017, 0.013) - 
PM2.5 (µg/m3) -0.009 (-0.025, 0.008) -0.006 (-0.026, 0.015) -0.008 (-0.030, 0.014) - 
PM2.5abs (0.0001/m) -0.010 (-0.022, 0.002) -0.011 (-0.027, 0.006) -0.010 (-0.023, 0.003) - 
NO2 (µg/m3) -0.008 (-0.022, 0.007) - -0.006 (-0.022, 0.010) -0.005 (-0.022, 0.013) 
PNAM (n/mL) -0.006 (-0.023, 0.011) -0.003 (-0.022, 0.016) - 0.000 (-0.023, 0.022) 

Right Lateral pDMN     
PM10 (µg/m3) -0.008 (-0.021, 0.005) -0.007 (-0.022, 0.008)  -0.006 (-0.020, 0.008) - 
PM2.5 (µg/m3) -0.013 (-0.028, 0.002) -0.014 (-0.032, 0.005) -0.011 (-0.032, 0.009) - 
PM2.5abs (0.0001/m) -0.007 (-0.018, 0.005) -0.006 (-0.021, 0.009) -0.004 (-0.017, 0.008) - 
NO2 (µg/m3) -0.006 (-0.019, 0.008) - -0.002 (-0.017, 0.013)  0.001 (-0.015, 0.018) 
PNAM (n/mL) -0.010 (-0.026, 0.005) -0.009 (-0.027, 0.008) - -0.003 (-0.024, 0.018) 

Right Medial pDMN     
PM10 (µg/m3)  0.000 (-0.010, 0.010) -0.001 (-0.012, 0.011) -0.001 (-0.012, 0.010) - 
PM2.5 (µg/m3) -0.001 (-0.013, 0.010) -0.003 (-0.018, 0.011) -0.006 (-0.022, 0.010) - 
PM2.5abs (0.0001/m) -0.003 (-0.012, 0.006) -0.006 (-0.018, 0.005) -0.004 (-0.013, 0.005) - 
NO2 (µg/m3)  0.001 (-0.009, 0.012) -  0.000 (-0.011, 0.012)  0.003 (-0.010, 0.016) 
PNAM (n/mL)  0.003 (-0.009, 0.015) 0.003 (-0.010, 0.017) -  0.007 (-0.009, 0.024) 

Abbreviations: aDMN, anterior Default Mode Network; lGI, local gyrification index; NO2, nitrogen dioxide; pDMN, 
posterior Default Mode Network; PM10, particulate matter with diameter ≤10 µm; PM2.5, particulate matter with 
diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number concentration. 

 

  



Table S6.  Associations between environmental exposures, lGI, and cortical thickness (mm) in the Main Model as and the 
Main Model using updated sociodemographic variables from the 10-year HNR follow-up were used. Associations are given 
per IQR increase for air pollutants and per 10 dB(A) increase in noise. 

 lGI Cortical Thickness 

Exposure Main Model Updated Variables 
Model Main Model Updated Variables 

Model 
Left aDMN     

PM10 (µg/m3) -0.006 (-0.014, 0.002) -0.005 (-0.014, 0.003)  0.000 (-0.015, 0.016)  0.000 (-0.015, 0.016) 
PM2.5 (µg/m3) -0.006 (-0.016, 0.004) -0.004 (-0.014, 0.005) -0.009 (-0.027, 0.009) -0.011 (-0.029, 0.007) 
PM2.5abs (0.0001/m) -0.003 (-0.010, 0.004) -0.002 (-0.009, 0.005) -0.004 (-0.017, 0.010) -0.004 (-0.018, 0.009) 
NO2 (µg/m3) -0.007 (-0.015, 0.002) -0.005 (-0.014, 0.003) -0.001 (-0.016, 0.015) -0.001 (-0.017, 0.014) 
PNAM (n/mL) -0.004 (-0.014, 0.006) -0.002 (-0.012, 0.008) -0.012 (-0.031, 0.006) -0.015 (-0.033, 0.003) 
Lden (dB[A])  0.005 (-0.004, 0.014)  0.005 (-0.004, 0.014)  0.002 (-0.015, 0.019)  0.002 (-0.015, 0.018) 
Lnight (dB[A])  0.005 (-0.004, 0.014)  0.005 (-0.004, 0.014)  0.003 (-0.014, 0.020)  0.002 (-0.015, 0.020) 

Left Lateral pDMN     
PM10 (µg/m3)  0.001 (-0.012, 0.013) -0.001 (-0.014, 0.012) -0.005 (-0.018, 0.008) -0.005 (-0.018, 0.008) 
PM2.5 (µg/m3)  0.002 (-0.012, 0.017) -0.000 (-0.015, 0.015) -0.003 (-0.018, 0.013) -0.004 (-0.019, 0.011) 
PM2.5abs (0.0001/m)  0.010 (-0.001, 0.021)  0.009 (-0.002, 0.020) -0.002 (-0.014, 0.009) -0.004 (-0.016, 0.007) 
NO2 (µg/m3) -0.004 (-0.017, 0.009) -0.004 (-0.017, 0.009)  0.003 (-0.011, 0.016)  0.001 (-0.013, 0.014) 
PNAM (n/mL)  0.002 (-0.013, 0.017)  0.001 (-0.014, 0.017)  0.005 (-0.011, 0.021)  0.003 (-0.013, 0.018) 
Lden (dB[A]) -0.003 (-0.017, 0.011) -0.005 (-0.019, 0.009)  0.008 (-0.006, 0.023)  0.007 (-0.007, 0.021) 
Lnight (dB[A]) -0.004 (-0.018, 0.010) -0.005 (-0.019, 0.009)  0.010 (-0.005, 0.025)  0.009 (-0.006, 0.023) 

Left Medial pDMN     
PM10 (µg/m3) -0.001 (-0.016, 0.015) -0.002 (-0.017, 0.014) -0.003 (-0.013, 0.007) -0.004 (-0.014, 0.006) 
PM2.5 (µg/m3)  0.003 (-0.015, 0.021)  0.002 (-0.016, 0.020) -0.006 (-0.017, 0.006) -0.008 (-0.019, 0.004) 
PM2.5abs (0.0001/m) -0.002 (-0.015, 0.012) -0.002 (-0.016, 0.011) -0.002 (-0.010, 0.007) -0.003 (-0.012, 0.006) 
NO2 (µg/m3) -0.004 (-0.020, 0.012) -0.004 (-0.020, 0.011) -0.001 (-0.011, 0.009) -0.002 (-0.012, 0.008) 
PNAM (n/mL)  0.004 (-0.014, 0.023)  0.004 (-0.014, 0.023) -0.003 (-0.015, 0.009) -0.003 (-0.015, 0.008) 
Lden (dB[A]) 0.005 (-0.012, 0.022)  0.005 (-0.012, 0.022) -0.002 (-0.013, 0.008) -0.003 (-0.014, 0.008) 
Lnight (dB[A]) 0.005 (-0.012, 0.022)  0.005 (-0.012, 0.023) -0.001 (-0.023, 0.010) -0.001 (-0.012, 0.010) 

Right aDMN     
PM10 (µg/m3) -0.005 (-0.013, 0.003) -0.005 (-0.014, 0.003) -0.004 (-0.018, 0.010) -0.003 (-0.018, 0.011) 
PM2.5 (µg/m3) -0.003 (-0.013, 0.006) -0.004 (-0.014, 0.006) -0.009 (-0.025, 0.008) -0.009 (-0.25, 0.007) 
PM2.5abs (0.0001/m)  0.001 (-0.006, 0.008)  0.001 (-0.007, 0.008) -0.010 (-0.022, 0.002) -0.010 (-0.023, 0.002) 
NO2 (µg/m3) -0.002 (-0.011, 0.006) -0.002 (-0.011, 0.006) -0.008 (-0.022, 0.007) -0.006 (-0.020, 0.008) 
PNAM (n/mL) -0.003 (-0.013, 0.008) -0.003 (-0.013, 0.007) -0.006 (-0.023, 0.011) -0.007 (-0.024, 0.009) 
Lden (dB[A]) 0.004 (-0.005, 0.013)  0.003 (-0.006, 0.012)  0.015 (0.000, 0.030)  0.015 (-0.000, 0.030) 
Lnight (dB[A]) 0.003 (-0.006, 0.012)  0.003 (-0.007, 0.012)  0.018 (0.002, 0.033)  0.017 (0.002, 0.033) 

Right Lateral pDMN     
PM10 (µg/m3) -0.001 (-0.015, 0.013) -0.001 (-0.014, 0.013) -0.008 (-0.021, 0.005) -0.001 (-0.011, 0.009) 
PM2.5 (µg/m3)  0.004 (-0.012, 0.020)  0.003 (-0.012, 0.019) -0.013 (-0.028, 0.002) -0.003 (-0.014, 0.009) 
PM2.5abs (0.0001/m)  0.007 (-0.005, 0.019)  0.007 (-0.005, 0.018) -0.007 (-0.018, 0.005) -0.004 (-0.013, 0.005) 
NO2 (µg/m3) -0.007 (-0.021, 0.007) -0.006 (-0.020, 0.008) -0.006 (-0.019, 0.008)  0.001 (-0.009, 0.012) 
PNAM (n/mL)  0.009 (-0.007, 0.026)  0.009 (-0.007, 0.025) -0.010 (-0.026, 0.005)  0.003 (-0.009, 0.015) 
Lden (dB[A]) -0.005 (-0.020, 0.010) -0.005 (-0.020, 0.009)  0.003 (-0.011, 0.017)  0.004 (-0.007, 0.015) 
Lnight (dB[A]) -0.005 (-0.020, 0.010) -0.005 (-0.020, 0.010)  0.005 (-0.009, 0.019)  0.006 (-0.005, 0.017) 

Right Medial pDMN     
PM10 (µg/m3)  0.003 (-0.014, 0.020)  0.002 (-0.015, 0.019)  0.000 (-0.010, 0.010) -0.009 (-0.022, 0.004) 
PM2.5 (µg/m3)  0.006 (-0.013, 0.026)  0.005 (-0.014, 0.024) -0.001 (-0.013, 0.010) -0.014 (-0.029, 0.001) 
PM2.5abs (0.0001/m) 0.000 (-0.015, 0.014) -0.002 (-0.016, 0.013) -0.003 (-0.012, 0.006) -0.008 (-0.020, 0.003) 
NO2 (µg/m3)  0.000 (-0.017, 0.017) -0.001 (-0.018, 0.016)  0.001 (-0.009, 0.012) -0.007 (-0.020, 0.006) 
PNAM (n/mL)  0.000 (-0.019, 0.020)  0.000 (-0.019, 0.020)  0.003 (-0.009, 0.015) -0.011 (-0.026, 0.005) 
Lden (dB[A]) -0.006 (-0.024, 0.012) -0.007 (-0.025, 0.011)  0.004 (-0.007, 0.015)  0.002 (-0.012, 0.016) 

Lnight  (dB[A]) -0.007 (-0.025, 0.011) -0.008 (-0.026, 0.011)  0.006 (-0.005, 0.017)  0.005 (-0.009, 0.019) 
Abbreviations: aDMN, anterior Default Mode Network; Lden, weighted 24-hour noise; lGI, local gyrification index; Lnight , nighttime noise; 
NO2, nitrogen dioxide; pDMN, posterior Default Mode Network; PM10, particulate matter with diameter ≤10 µm; PM2.5, particulate 
matter with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number concentration. 



 

Table S7. Associations between residential nearness to a major road (nyes=109; nno=470) and brain 
structure measures (lGI and cortical thickness) in various regions of the Default Mode Network. Models 
were adjusted for age at MRI, sex, alcohol consumption, body mass index, diet, physical activity, smoking 
status, cumulative smoking, environmental tobacco smoke exposure, and 24-hour outdoor noise. 

Region of the DMN Left 
Estimate (95% CI) 

Right 
Estimate (95% CI) 

lGI   
aDMN -0.005 (-0.028, 0.018) 0.015 (-0.008, 0.039) 
Lateral pDMN -0.006 (-0.042, 0.030) -0.021 (-0.059, 0.017) 
Medial pDMN -0.016 (-0.060, 0.027) 0.008 (-0.039, 0.054) 

Cortical Thickness (mm)   
aDMN -0.004 (-0.047, 0.039) -0.012 (-0.051, 0.027) 
Lateral pDMN -0.019 (-0.056, 0.018) -0.014 (-0.050, 0.022) 
Medial pDMN -0.006 (-0.034, 0.022) -0.008 (-0.036, 0.020) 

Abbreviations: aDMN, anterior Default Mode Network; CI, confidence interval; DMN, Default Mode Network; lGI, 
local gyrification index; MRI, magnetic resonance imaging; pDMN, posterior Default Mode Network. 



 

Fig. S1. Directed acyclic graph constructed using DAGitty depicting the causal assumptions made when 
evaluating the associations between AP and structural measures of the Default Mode Network of the brain 
(lGI, CT). Minimum adjustment sets for addressing potential confounding on AP and DMN measures 
were: 1) Age, Alcohol Consumption, BMI, Nutrition, Physical Activity, Sex, Smoking, Traffic Noise; 2) 
Neighborhood, Traffic Noise; 3) individual SES, Traffic Noise. 

Abbreviations: AP, air pollution; BMI, body mass index; CT, cortical thickness; DMN, Default Mode Network; lGI, 
local gyrification index; SES, socioeconomic status 

  

 



 

Fig. S2. Derivation of the study population. 

Abbreviations: AP, air pollution



 

Fig. S3. Associations between air pollution, noise, and A) lGI and B) cortical thickness in the DMN of the 
brain, upon adjustment for various different variables. Estimates and their 95% confidence intervals were 
calculated per interquartile range increase for AP and per 10 dB(A) for noise exposures. Model 1 included 
the AP or noise exposure, age and sex. Model 2 included age, sex, body mass index, alcohol consumption, 
smoking status, cumulative smoking, environmental tobacco smoke exposure, diet, and physical activity. 
In Model 3 (Main Model), AP models were additionally adjusted for outdoor Lden whereas noise models 
were additionally adjusted for PM2.5abs. A further model adjusting for Model 3 variables as well as 
individual and neighborhood socioeconomic status was also conducted.  

Abbreviations: aDMN, anterior Default Mode Network; AP, air pollution; dB(A), A-weighted decibels; DMN, 
Default Mode Network; Lden, outdoor 24-hour weighted noise; lGI, local gyrification index; Lnight, outdoor nighttime 
noise; NO2, nitrogen dioxide; pDMN, posterior Default Mode Network; PM10, particulate matter with diameter ≤10 
µm; PM2.5, particulate matter with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode 
particle number concentration  

  



 

Fig. S4. Associations between outdoor and indoor noise, A) lGI, and B) cortical thickness (mm) within 
regions of the DMN in the right and left hemispheres of the brain. Estimates are shown for the full dataset 
(n=579) as well as the smaller dataset with complete indoor noise data (n=518). Associations were 
calculated per 10 dB(A) increase. Models were adjusted for age at MRI, sex, alcohol consumption, body 
mass index, diet, physical activity, smoking status, cumulative smoking, environmental tobacco smoke 
exposure, and PM2.5abs. 

Abbreviations: aDMN, anterior Default Mode Network; AP, air pollution; dB(A), A-weighted decibels; DMN, 
Default Mode Network; pDMN, posterior Default Mode Network; I-Lden, indoor 24-hour weighted noise; I-Lnight, 
indoor nighttime noise; Lden, outdoor 24-hour weighted noise; lGI, local gyrification index; Lnight, outdoor nighttime 
noise; PM2.5abs, PM2.5 absorbance 

 

 

 

 



 

Fig. S5. Effect modification analyses evaluating associations between AP, noise, and A) lGI and B) 
cortical thickness in the DMN for all participants (n=579), among participants <65 years old at MRI 
(n=255), and among participants 65+ years old at MRI (n=324). Estimates for AP and noise were 
calculated per interquartile range or 10 dB(A) increase, respectively. All models adjusted for age, sex, 
body mass index, alcohol consumption, smoking status, cumulative smoking, environmental tobacco 
smoke exposure, diet, physical activity, and an interaction term between age category (<65 vs. 65+ years) 
and exposure. AP models were additionally adjusted for outdoor Lden whereas noise models were 
additionally adjusted for PM2.5abs.  

Abbreviations: aDMN, anterior Default Mode Network; AP, air pollution; dB(A), A-weighted decibels; DMN, 
Default Mode Network; lGI, local gyrification index; NO2, nitrogen dioxide; Lden, outdoor 24-hour weighted noise; 
Lnight, outdoor nighttime noise; pDMN, posterior Default Mode Network; PM10, particulate matter with diameter ≤10 
µm; PM2.5, particulate matter with diameter ≤2.5 µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode 
particle number concentration  

  



 

Fig. S6. Sensitivity analyses evaluating associations between AP, noise, and A) lGI and B) cortical 
thickness in the DMN among all participants (n=579), among participants who worked less than 15 hours 
per week at 10-year follow-up HNR examination (n=429), among all participants using exposures 
assigned at their 5-year HNR examination residential address (n=579), and among participants who did 
not move between HNR baseline and 1000BRAINS recruitment (n=442). All models adjusted for age, 
sex, body mass index, alcohol consumption, smoking status, cumulative smoking, environmental tobacco 
smoke exposure, diet, and physical activity. AP models were additionally adjusted for outdoor Lden 
whereas noise models were additionally adjusted for PM2.5abs. Estimates for AP and noise were calculated 
per interquartile range or 10 dB(A) increase, respectively. 

Abbreviations: aDMN, anterior Default Mode Network; AP, air pollution; dB(A), A-weighted decibels; DMN, 
Default Mode Network; HNR, Heinz Nixdorf Recall study; IQR, interquartile range; lGI, local gyrification index; 
NO2, nitrogen dioxide; Lden, outdoor 24-hour weighted noise; Lnight, outdoor nighttime noise; pDMN, posterior 
Default Mode Network; PM10, particulate matter with diameter ≤10 µm; PM2.5, particulate matter with diameter ≤2.5 
µm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number concentration  
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